Formation of supported bilayers on silica substrates.
نویسندگان
چکیده
We have investigated the formation of phospholipid bilayers of the neutral (zwitterionic) lipid dimyristoyl-phosphatidylcholine (DMPC) on various glass surfaces from vesicles in various aqueous solutions and temperatures using a number of complementary techniques: the surface forces apparatus (SFA), quartz crystal microbalance (QCM), fluorescence recovery after photobleaching (FRAP), fluorescence microscopy, and streaming potential (SP) measurements. The process involves five stages: vesicle adhesion to the substrate surfaces via electrostatic and van der Waals forces, steric interactions with neighboring vesicles, rupture, spreading via hydrophobic fusion of bilayer edges, and ejection of excess lipid, trapped water, and ions into the solution. The forces between DMPC bilayers and silica were measured in the SFA in phosphate buffered saline (PBS), and the adhesion energy was found to be 0.5-1 mJ/m(2) depending on the method of bilayer preparation. This value is stronger than the expected adhesion predicted by van der Waals interactions. Theoretical analysis of the bilayer-silica interaction shows that the strong attraction is likely due to an attractive electrostatic interaction between the uncharged bilayer and negatively charged silica owing to the surfaces interacting at "constant potential." However, the bilayer-silica interaction in distilled water was found to be repulsive at all distances, which is attributed to the surfaces interacting at "constant charge." These results are consistent with QCM measurements that show vesicles readily forming bilayers on silica in high salt but only weakly adhering in low salt conditions. We conclude that the electrostatic interaction is the most important interaction in determining the adhesion between neutral bilayers and charged hydrophilic surfaces. SP and FRAP experiments gave insights into the bilayer formation process as well as information on the surface coverage, lateral diffusion of the lipid molecules, and surface potential of the bilayers during the spreading process.
منابع مشابه
Substrate Effects on the Formation Process, Structure and Physicochemical Properties of Supported Lipid Bilayers
Supported lipid bilayers are artificial lipid bilayer membranes existing at the interface between solid substrates and aqueous solution. Surface structures and properties of the solid substrates affect the formation process, fluidity, two-dimensional structure and chemical activity of supported lipid bilayers, through the 1–2 nm thick water layer between the substrate and bilayer membrane. Even...
متن کاملSupported lipid bilayer repair mediated by AH peptide.
The adsorption and fusion of small unilamellar lipid vesicles on silica-based substrates such as glass is a common method used to fabricate supported lipid bilayers. Successful bilayer formation depends on a number of experimental conditions as well as on the quality of the vesicle preparation. Inevitably, a small fraction of unruptured vesicles always remains in a supported bilayer, and this k...
متن کاملBiomimetic silica microspheres in biosensing.
Lipid vesicles spontaneously fuse and assemble into a lipid bilayer on planar or spherical silica surfaces and other substrates. The supported lipid bilayers (SLBs) maintain characteristics of biological membranes, and are thus considered to be biomembrane mimetic systems that are stable because of the underlying substrate. Examples of their shared characteristics with biomembranes include late...
متن کاملObservation of the formation of supported bilayers by amphiphilic peptidyl-RNA.
Amphiphilic peptidyl-RNA conjugates, molecules that mimic natural peptidyl-transfer RNA, are capable of self-assembling on glass substrates as vesicles and supported bilayers.
متن کاملFormation of supported lipid bilayers on silica: relation to lipid phase transition temperature and liposome size.
DPPC liposomes ranging from 90 nm to 160 nm in diameter were prepared and used for studies of the formation of supported lipid membranes on silica (SiO2) at temperatures below and above the gel to liquid-crystalline phase transition temperature (Tm = 41 °C), and by applying temperature gradients through Tm. The main method was the quartz crystal microbalance with dissipation (QCM-D) technique. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2009